Inhaltsverzeichnis

	Vorwort	VII
	Abbildungsverzeichnis	X
	Tabellenverzeichnis	XIII
1	Einleitung	1
2	Erdkabel	2
2.1	Wärmeentwicklung von Erdkabeln	
2.2	Erdkabel und Freileitung im Vergleich	
2.3	Kabelverlegung	
3	Thermische Bodeneigenschaften	10
3.1	Wärmehaushalt	11
3.2	Wärmetransport	11
3.2.1	Wärmeleitung	13
3.2.2	Konvektion	
3.3	Thermische Parameter	
3.3.1	Wärmeleitfähigkeit	
3.3.2	Wärmekapazität	
3.3.3	Temperaturleitfähigkeit	
4	Bestimmung der thermischen Parameter	
4.1	Methoden zur Bestimmung der Wärmeleitfähigkeit und	
	der Wärmekapazität	
4.1.1	Linien-Quellen-Methode	
4.1.2	Optical Scanning Verfahren	
4.1.3	Divided-Bar-Methode	
4.1.4	Thermal-Response-Test	
4.1.5	Zusammenfassung der Vor- und Nachteile der	
	Methoden zur Bestimmung der Wärmeleitfähigkeit	
4.2	Bestimmung mit der Nadelsonden-Methode	
4.2.1	Das Messgerät	
4.2.2	Versuchsaufbau	
4.2.3	Versuchsdurchführung	

Laudatio_____III

5	Darstellung und Bewertung der Messergebnisse	
5.1	Charakterisierung und Auswahl der Böden	
5.1.1	Probe 1	
5.1.2	Probe 2	
5.1.3	Probe 3	
5.2	Messergebnisse	
5.2.1	Probe 1 (fS, ms, u' - $\rho_1 = 1,48 \text{ g/cm}^3$)	
5.2.2	Probe 2 (mS, gs, fs' $-\rho_d = 1,56 \text{ g/cm}^3$)	50
5.2.3	Probe 3 (U, fs, t' $- \rho_d = 1,67 \text{ g/cm}^3$)	
5.3	Bewertung der Reproduzierbarkeit	
5.4	Vergleich mit Literaturwerten und vorherigen	
	Messungen des ICP Braunschweig	
5.4.1	Literaturwerte	
5.4.2	Messwerte der ICP Braunschweig GmbH	
5.5	Einstufung der Böden nach Eignung für den Trassenbau	
5.5.1	Berechnung des Grenzwertes	
5.5.2	Interpretation des Grenzwertes und Auswirkungen auf	
	den Bau einer Mittelspannungserdkabeltrasse	
6	Zusammenfassung und Ausblick	
7	Literaturverzeichnis	
8	Anhang	
	Danksagung und Ausblick	
	Sachwortverzeichnis	96

Abbildungsverzeichnis

Abbildung 1:	Netzebenen des elektrischen Transportnetzes [Blum, Rosenth and Diekmann, 2020]	al 3
Abbildung 2:	Aufbau der Starkstromkabel	. 3
Abbildung 3:	Standardkabelkonstruktion NA2XS2Y für Mittelspannung nach DIN VDE 0276-620 [Cichowski and Kliesch, 2012]	. 5
Abbildung 4:	Erwärmung eines Dreierbündels von Mittelspannungskabeln in 70 cm Tiefe in Abhängigkeit von Strom und dem Wärme- widerstand $R_{th,spez}$ des Bodens [Stegner, 2016]	8
Abbildung 5:	Schematische Darstellung von Wassermenisken	13
Abbildung 6:	Wärmeleitfähigkeit in Abhängigkeit vom Wassergehalt für einen Sandboden mit Porenvolumen von 40 Vol- % und 60 Vol- % [Bachmann, 1996b]	16
Abbildung 7:	Volumetrische Wärmekapazität in Abhängigkeit vom Wassergehalt für einen Sandboden mit Porenvolumen von 40 und 60 Vol- % [Bachmann, 1996b]	18
Abbildung 8:	Temperaturleitfähigkeit in Abhängigkeit vom Wassergehalt für einen Sandboden mit Porenvolumen von 40 Vol- % und 60 Vol- % [Bachmann, 1996b]	19
Abbildung 9:	Übersicht Bestimmungsmethoden der Wärmeleitfähigkeit	21
Abbildung 10:	KD2-Pro mit verschiedenen Vollraumsonden [www.ictinternational.com]	22
Abbildung 11:	TK04 Halbraumsonden der Firma Teka [www.te-ka.de]	23
Abbildung 12:	Schematischer Aufbau des Thermal Conductivity Scanner [Personenkreis Geothermie, 2015]	24
Abbildung 13:	Schematische Darstellung der Divided-Bar-Methode [Pasquale, Verdoya and Chiozzi, 2017]	25
Abbildung 14:	Schematischer Aufbau eines Thermal-Response-Tests [www.hdg-gmbh.com]	26
Abbildung 15:	Schematischer Aufbau eines Messzylinders mit 5 Ringen und Löchern für die Messungen	33
Abbildung 16:	Einführung der SH-1 Sonde durch Löcher im Messzylinder	34
Abbildung 17:	Einführung der TR-1 Sonde durch Löcher im Messzylinder	34

Abbildung 18:	Ringweise Befüllung des Messzylinders mit Handstampfer	35
Abbildung 19:	Messzylinder bei der Messung	37
Abbildung 20:	Kornverteilungen	40
Abbildung 21:	Probe 1 Abhängigkeit der Wärmeleitfähigkeit vom Wassergehalt	.43
Abbildung 22:	Probe 2 Abhängigkeit der Wärmeleitfähigkeit vom Wassergehalt	.44
Abbildung 23:	Probe 3 Wärmeleitfähigkeit in Abhängigkeit vom Wassergehalt	44
Abbildung 24:	Probe 1 Abhängigkeit der Wärmeleitfähigkeit der TR-1 Sonde vom Wassergehalt mit Fehlerindikatoren bei ± 10 % vom Mittelwert	.48
Abbildung 25:	Probe 1 Abhängigkeit der Wärmeleitfähigkeit der SH-1 Sonde vom Wassergehalt mit Fehlerindikatoren bei ±10 % vom Mittelwert	.48
Abbildung 26:	Probe 1 Abhängigkeit der Wärmekapazität vom Wasser- gehalt mit Fehlerindikatoren	50
Abbildung 27:	Probe 2 Abhängigkeit der Wärmeleitfähigkeit der TR-1 Sonde vom Wassergehalt mit Fehlerindikatoren bei ±10 % vom Mittelwert	54
Abbildung 28:	Probe 2 Abhängigkeit der Wärmeleitfähigkeit der SH-1 Sonde vom Wassergehalt mit Fehlerindikatoren bei ±10 % vom Mittelwert	.54
Abbildung 29:	Probe 2 Wärmekapazität in Abhängigkeit vom Wassergehalt	55
Abbildung 30:	Probe 3 Abhängigkeit der Wärmeleitfähigkeit der TR-1 Sonde vom Wassergehalt mit Fehler-indikatoren bei ± 10 % vom Mittelwert	59
Abbildung 31:	Probe 3 Abhängigkeit der Wärmeleitfähigkeit der SH-1 Sonde vom Wassergehalt mit Fehler-indikatoren bei $\pm 10\%$ vom Mittelwert	.60
Abbildung 32:	Probe 3 Wärmekapazität in Abhängigkeit vom Wassergehalt	61
Abbildung 33:	Abweichung der Wärmeleitfähigkeitsmesswerte im gleichen Messkanal der TR-1 Sonde	.62
Abbildung 34:	Abweichung der Wärmeleitfähigkeitsmesswerte im gleichen Messkanal der SH-1 Sonde	62

Abbildung 35	Abweichung der Wärmekapazitätsmesswerte im gleichen Messkanal der SH-1 Sonde	64
Abbildung 36	Abhängigkeit der Wärmeleitfähigkeit vom Wassergehalt der Füllsubstrate (Kreuze:Messdaten, Linie:Anpassung der Johansen-Funktion) [Trinks, 2010]	68
Abbildung 37	Abhängigkeit der Messwerte der Probe 1 und der des leicht schluffigen Sandes aus [Trinks, 2010]	69
Abbildung 38	Abhängigkeit der Messwerte der Probe 2 und der des Mittelsandes aus [Trinks, 2010]	71
Abbildung 39	Abhängigkeit der Messwerte der Probe 3 und der des mittel tonigem Schluff, des mittel schluffigen Sandes und des stark lehmigen Sandes von [Trinks, 2010]	71
Abbildung 40	Probe1, VP 1.1, VP 1.2 Wärmeleitfähigkeit in Abhängigkeit vom Wassergehalt	73
Abbildung 41	Probe 2, VP 2.1, VP 2.2 Wärmeleitfähigkeit in Abhängigkeit vom Wassergehalt	74
Abbildung 42	Probe 3, VP 3.1, VP 3.2, VP 3.3 Wärmeleitfähigkeit in Abhängigkeit vom Wassergehalt	75
Abbildung 43	Wärmeleitfähigkeit in Abhängigkeit vom Wassergehalt (alle Proben)	81

Tabellenverzeichnis

Tabelle 1:	Spezifischer Widerstand für verschiedene Materialien bei 20 °C [Albach, 2008]	6
Tabelle 2:	Übersicht über bodenphysikalische Größen und Prozesse, die den Wärmefluss im Dreiphasensystem Boden beeinflussen [Blume, Horn and Thiele-Bruhn, 2011]	. 12
Tabelle 3:	Zusammenfassung der Vor- und Nachteile der Methoden	. 27
Tabelle 4:	Sonden Kompatibilität zur Messung der Wärmeleitfähigkeit [Decagon Devices, 2016]	. 29
Tabelle 5:	Abmessung, Messbereich und -genauigkeit der TR-1 und SH-1 Sonde	. 29
Tabelle 6:	Bezeichnung, Bodenart und Trockendichte der untersuchten Böden	. 42
Tabelle 7:	Probe 1 Übersicht über die Trockendichten, die Wassergehalte und die Anzahl der Messungen	. 46
Tabelle 8:	Probe 2 Übersicht über die Trockendichten, die Wassergehalte und die Anzahl der Messungen	. 52
Tabelle 9:	Probe 3 Übersicht über die Trockendichten, die Wassergehalte und die Anzahl der Messungen	. 57
Tabelle 10:	Bezeichnung, Bodenart und Trockendichte der untersuchten Böden	. 63
Tabelle 11:	Beispiele für Wärmeleitfähigkeit und volumenbezogene spezifische Wärmekapazität des Untergrundes [VDI 4640 Blatt 1:2010-06]	. 66
Tabelle 12:	Thermische Parameter des Niederrheins [Clauser et al., 2011]	. 67
Tabelle 13:	Wärmeleitfähigkeit λ [$^{W\!/_{m\cdot K}}$] der Substrate bei verschiedenen Wassergehalten [Trinks, 2010]	. 68
Tabelle 14:	Probennamen mit Korngrößen und Trockendichten	. 72
Tabelle 15:	Eigenschaften der ausgewählten Mittelspannungskabel [Nexans Deutschland GmbH, 2020]	. 77
Tabelle 16:	Abmessung des NA2XS2Y 150 RM/25 18/30 kV Kabels	.79